Open-source machine learning: R meets Weka
نویسندگان
چکیده
منابع مشابه
WEKA: A Machine Learning Workbench
WEKA is a workbench for machine learning that is intended to aid in the application of machine learning techniques to a variety of real-world problems, in particular, those arising from agricultural and horticultural domains. Unlike other machine learning projects, the emphasis is on providing a working environment for the domain specialist rather than the machine learning expert. Lessons learn...
متن کاملJCLEC Meets WEKA!
WEKA has recently become a very referenced DM tool. In spite of all the functionality it provides, it does not include any framework for the development of evolutionary algorithms. An evolutionary computation framework is JCLEC, which has been successfully employed for developing several EAs. The combination of both may lead in a mutual benefit. Thus, this paper proposes an intermediate layer t...
متن کاملIntroducing Machine Learning Concepts with WEKA.
This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorith...
متن کاملOpen source R for applying machine learning to RPAS remote sensing images
The increase in the number of remote sensing platforms, ranging from satellites to close-range Remotely Piloted Aircraft System (RPAS), is leading to a growing demand for new image processing and classification tools. This article presents a comparison of the Random Forest (RF) and Support Vector Machine (SVM) machine-learning algorithms for extracting land-use classes in RPAS-derived orthomosa...
متن کاملWEKA - Experiences with a Java Open-Source Project
WEKA is a popular machine learning workbench with a development life of nearly two decades. This article provides an overview of the factors that we believe to be important to its success. Rather than focussing on the software’s functionality, we review aspects of project management and historical development decisions that likely had an impact on the uptake of the project.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2008
ISSN: 0943-4062,1613-9658
DOI: 10.1007/s00180-008-0119-7